A Probabilistic Approach to Spectral Unmixing
نویسندگان
چکیده
In this paper, we present a statistical approach to spectral unmixing with unknown endmember spectra and unknown illuminant power spectrum. The method presented here is quite general in nature, being applicable to settings in which sub-pixel information is required. The method is formulated as a simultaneous process of illuminant power spectrum prediction and basis material reflectance decomposition via a statistical approach based upon deterministic annealing and the maximum entropy principle. As a result, the method presented here is related to soft clustering tasks with a strategy for avoiding local minima. Furthermore, the final endmembers depend on the similarity between pixel reflectance spectra. Hence, the method does not require a preset number of material clusters or spectral signatures as input. We show the utility of our method on trichromatic and hyperspectral imagery and compare our results to those yielded by alternatives elsewhere in the literature.
منابع مشابه
تجزیه ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه ی طیفی هرس شده
Spectral unmixing of hyperspectral images is one of the most important research fields in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملSpatial Interpolation as a Tool for Spectral Unmixing of Remotely Sensed Images
Super resolution-based spectral unmixing (SRSU) is a recently developed method for spectral unmixing of remotely sensed imagery, but it is too complex to implement for common users who are interested in land cover mapping. This study makes use of spatial interpolation as an alternative approach to achieve super resolution reconstruction in SRSU. An ASTER image with three spectral bands was used...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کامل